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Abstract

This is a document on the base-2 abstract numerical system, or Binary
system. This is a VERY easy concept to learn, it’s amazing that the binary
system is not common knowledge! In fact it’s easier than the system you
already know!

1



Contents

1 What is it? 3

2 Why use it? Why not? 4

3 Binary Numbers 5
3.1 Binary Conversion . . . . . . . . . . . . . . 5
3.2 Addition . . . . . . . . . . . . . . . . . . . 6
3.3 Subtraction . . . . . . . . . . . . . . . . . 7
3.4 Multiplication . . . . . . . . . . . . . . . 8
3.5 Division . . . . . . . . . . . . . . . . . . . 9

4 Bitwise Operations 10
4.1 1’s Compliment . . . . . . . . . . . . . . . 10
4.2 Big and Little Endians . . . . . . . . . . . 11

5 Bit Shifting 12

6 Other Computer Numbering Systems 13
6.1 Octal System . . . . . . . . . . . . . . . . 13
6.2 Hexadecimal System . . . . . . . . . . . . . 14

2



1 What is it?
We should begin by defining a numeral. A numeral is a symbol that describes
a number. Expressions such as: 4, IV, 78, 101 are all numerals describing
numbers. A numeral is not a number, it is an expression describing a number.
A number is a concept of quantity. One must know the difference because the
same number may be described by many different numerals. An example would
be 4 (in radix-10, or Base-10, the way we think), IV(in Roman numerals), or
(100, in Radix-2, or Base-2, otherwise known as Binary). The fact is, for small
numbers, it is actually easier to think in base-2, or binary, than it is to think
in base-10, or decimal. Multiplication and division is way easier in binary than
the decimal way we were taught in school.

Thinking in different bases could be compared to a farmer looking into egg
cartons, counting by 12s; more on this later. What this means is 3 dozen
(base-12) is 3*12 = 36, in decimal (base 10, not base 12) that would be 3*10 +
6 = 36. Just keep reading, you’ll get it, really! Radix n is a numeration system
with a base of n. Later we will learn about octal numbers (a numeration system
with a base of 8, or radix 8 where the n in Radix n is 8).

A clock uses a Radix 60, numeration system, at least the seconds and min-
utes. These are just good examples to get you thinking about the concept,
and difference between numbers and numerals. A quick example of a an octal
number would be 268 The eight in subscript tells us we are looking at a number
described in Radix-8 notation. We will get into octals later, you do not have
to understand this right now, this is just to introduce you to the concept. This
number represents 2*8+6 in base-10 or 2210. This will make sense later.

When we write a number we assume it is in decimal format (radix-10), unless
the subscript tells us otherwise, or it is obviously implied. This means 1410 is
unnecessary because we already will assume that the text means 14 in decimal.

Base-2, or the binary system is the simplest system one can count in because
there are only two symbols to indicate a number 1 & 0 that’s it. The decimal
system needs 10 different symbols to describe the same numbers 0-9. and each
place from the right to the left is a multiple of 10.

10 to the Power of: (10n) 106 105 104 103 102 101 100

1,000,000 100,000 10,000 1,000 100 10 1

This means that the place from right to left, determines the power of the
numeral. The same is true for the binary system.

2 to the Power of: (2n) 26 25 24 23 22 21 20

64 32 16 8 4 2 1

That’s all there is to it. Now let’s try converting some numbers from decimal
to binary.

First lets try 48.

Decimal: 128 64 32 16 8 4 2 1
Binary: 0 0 1 1 0 0 0 0
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32 + 16 = 48, this is 110000 in binary, read from right to left. This is six
characters long (the most significant bit is six from the right) so this would be
at it’s smallest, a six bit number. Usually, computers reserve a set amount of

memory for numbers in sectors with an equal size, such as 8, 16, 32, or even 64
bits. So this number in an 8-bit register would be 00110000 (in other words
the extra zeros to the left are put in as padding, this will be important later

when we talk about bit shifting, but for now don’t worry about it.)

Let’s do another one, how about 19.

Decimal: 128 64 32 16 8 4 2 1
Binary: 0 0 0 1 0 0 1 1

This gives us the 8-bit binary number 00010011. This is because the largest
power of 2 (16 in base-10) is the most significant bit, the remainder is 310, this
means 21 will go into that once with a remainder of 110 which is 20. (Remember
from a few tables above that 20= 110, 21= 210, and 22= 410)

2 Why use it? Why not?
It is thought that we use the decimal system because we have 10 fingers, but
the truth is we could have just as easily used the binary system naturally. The
Mayans used a base-20 system, perhaps because they used their toes also. The
reason we want to be able to think in binary is for programming and circuit
design. The most basic TTL component is the flip-flop (a switch). It is High
or Low, On of Off, 1 or 0. If we wanted a computer to think in base-10 we
would need 9 different states not including a 0. With Radix-2 we only need 2
states, 1 or 0. This is the most efficient numeration system a digital computer
can work with at the lowest level. As a matter of fact this will remain true for
ALL computers until analog, or multi-state computers are invented.

The question is; if it’s so great, why don’t we use it all the time? Well it
can get very tedious to write, for instance 36771 in decimal notation only takes
5 characters to describe. In binary notation it is: 1000000000000011, the same
number takes 16 characters to describe, over 3 times as many characters! The
reason is simple, decimal notation has 10 characters to choose from to describe
a number 0-9, binary only has 2 characters, 1 and 0. There are systems that
can shorten decimal numbers also, such as base-16, known as the hexadecimal
system that we will learn about later. The same number in hex is 8003, this is
because in hex notation there are 16 characters to choose from, 0-F! For instance
3A in hex is equal to 58 in decimal. This is because A is in the 1’s column (160),
and 3 in the 16’s column (161) so (3*16+10 = 58, 10 = A in hex, carry the 1 in
decimal), more on that later.

To fully understand binary, we will need to study another type of numeration
system as well, this system is referred to as the octal system. Yes you guessed
it, the octal system is Radix-8, using the characters 0 though 7. The reason we
need to learn about counting in base-8 will become clear later. Working in octal
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numbers is an easy way to convert binary numerations to decimal notation, octal
numbers are sort of a mid point. Every three bits of a binary number represent
an octal digit. This makes it easy to look at a binary number and see what it is
as an octal. Again more on this later, the writing here is just to tell you what
is coming so you are not thrown into the world of unknown numeral systems.

3 Binary Numbers

3.1 Binary Conversion
OK, so now we have a vague understanding of binary notation. The next ques-
tion is; do we have an understandable, programmable way of getting binary
numbers from decimal numbers? The answer is yes! Lets start with 710; all you
have to do is keep dividing by 2 until there is no number left. I’ll explain, the
first divide by 2, is 3 in decimal. This gives us a remainder of 110; there are
only two numbers a remainder can be in binary or when dividing by two, 1 or
0. This is a powerful piece of information because it makes all your calculations
much easier. When you divide to get binary, you only record the remainders,
and you only operate (divide) on the result of your division. This will become
clear in a moment, this table will help you see how to convert 7 in decimal to
0111 in binary.

Divide: 7/2 = 3 3/2 = 1 1/2 = 0
Remainder: = 1 = 1 = 1

You than flip the result and that gives you 111, or 0111 with a zero on the
left to pad the number to 4 bits.

Now lets try converting 910 to binary.

Divide: 9/2 = 4 4/2 = 2 2/2 = 1 1/2 = 0
Remainder: = 1 = 0 = 0 = 1

Notice that each time we divide (9/2 gives us 4, then we divide 4 by 2, that
gives us 2, then 2/2 give us 1 and so forth) we only record the remainders. Then,
we flip the results, and there is our number 10012. Up until now our numbers
have been symmetrical so the flip has not been apparent. Lets try one that is
not symmetrical:

Let’s try 2310.

Divide: 23/2 = 11 11/2 = 5 5/2 = 2 2/2 = 1 1/2 = 0
Remainder: = 1 = 1 = 1 = 0 = 1

The answer is 101112. Now it matters which way we read the number, 11101
is a very different number than 10111. We always start reading the binary
number from the last operation we worked on (bottom to top). That’s it, that
is the hardest part, it’s all down hill from here!

Converting binary numbers to decimal notation is as easy as adding. The
8-bit number 000100112 for example.

5



Decimal: 128 64 32 16 8 4 2 1
Binary Place: 0 0 0 1 0 0 1 1

Just add where you see a 1. (16 + 2 + 1 = 19)
Just to review, for any number denoted a, where a is any non-zero number:

a0 a1 a2 a3 a4 an

Always = 1 Always = a ( the value of a) =a*a =a*a*a =a*a*a*a =a*a...n times

3.2 Addition
To add two numbers in binary, you do it the same way as you do in the decimal
system, only it is much easier in binary. This is because you are only adding,
or carrying, a 1, and the result in each column can only be a 1, or a 0. So here
we go:

0
+ 0

0

1
+ 0

1

1
+ 1
1 0

A ’1 ’ is carried

1
1

+ 1
1 1

A ’1 ’ is carried and a ’1 ’ remains

1
1
1

+ 1
1 0

+ 1 0
1 0 0

Above we just turn the 4 numbers into 2 (we add the top 1 + 1, then the
bottom 1 + 1) Then we simply add those two binary numbers together as well.
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1 0 1 1 0 1 1
+ 0 1 1 1 0 1 0
1 0 0 1 0 1 0 1

In decimal this is:
9 1

+ 5 8
1 4 9

The last one here, is not realistic because the two numbers to be added were
7 bits long. Let’s pad them (on the left of course so it doesn’t change their value
to make them 8 bits long).

0 1 0 1 1 0 1 1
+ 0 0 1 1 1 0 1 0

1 0 0 1 0 1 0 1

In decimal this is:
9 1

+ 5 8
1 4 9

All we did was add a zero to each number to bring it up to 8 bits in length.
If we were working on a system where the registers WERE actually 7-bit, then
we would have a problem because the result of the addition is 8 bits in length
and the last bit (to the left) would be truncated (lost). The computer would
see this if it had 7-bit registers:

1 0 1 1 0 1 1
+ 0 1 1 1 0 1 0

0 0 1 0 1 0 1

In decimal this is:
9 1

+ 5 8
2 1

!~~ WRONG ~~!

3.3 Subtraction
Subtraction in binary is the same as in decimal. You borrow just like you would
in the decimal system the only difference is that you are just working with 1
and 0. Here we go:

0
- 0

0

Binary
0

- 0
0

Decimal

1
- 0

1

Binary
1

- 0
1

Decimal
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1
- 1

0

Binary
1

- 1
0

Decimal

1 0
- 0 1

1

Binary
2

- 1
1

Decimal

You must remember, whenever you borrow, you are borrowing from two
times the amount (one column to the left). Go over the following carefully.
Here is an example of borrowing:

1 0 1 1 0
- 0 1 0 1 0

0 1 1 0 0

Binary
2 2

- 1 0
1 2

Decimal

1
1 1 1 1 0

- 0 1 0 1 0
0 1 1 0 0

Remember When Borrowing: It is the same

as putting two ones over the borrowing column.

3.4 Multiplication
Multiplication and division will never get easier than this, because in binary
you will never multiply (or divide) anything greater than 1! Multiplication is
performed with the same method used in decimal mathematics, from right to
left, and shifting left with each new operation multiplier.

0 1 1
* 1 1 0

0 0 0
0 1 1

0 1 1
1 0 0 1 0

Binary
3

* 6
1 8

Decimal
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1 1 0 1 0 0 1 0
* 1 0 0 1 0 1 0 1

1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0
1 1 1 1 0 1 0 0 0 1 1 1 0 1 0

Binary

2 1 0
* 1 4 9
1 8 9 0
8 4 0

2 1 0
3 1 2 9 0

Decimal

You should notice the pattern above. When multiplying by a 0, it is zero
across the board, when multiplying by 1, it is the same number it always is
(the top number). This is important when we get into bitshifting. With a large
enough register, we can just shift and add to multiply. For instance if we count
one set of zeros, then a 1’s row again we shift twice to the left then add, if we
count two rows of zeros then a 1’s row again, we shift 3 times to the left than
add. You do not have to understand this right now. Really, if you understand
multiplication in binary, then this page has done it’s job so far. Hang with it!

3.5 Division
Division is just as simple in binary notation becuase when you divide, your
numbers may either go into the number, or not. In other words if the divisor
goes into the number you are dividing, it will only go in once, or not at all. The
only quotent you can have is either a 1 or a 0.

10002 œ 1002 = 102 810 œ 410 = 210

1
1 0 0 / 1 0 0 0

1 0 0
0 0 0 0

You just divide and subtract just like you would with the decimal system.
Here is a larger example:

1 0 0 1 / 1 1 0 1 1 0

1
1 0 0 1 / 1 1 0 1 1 0

1 0 0 1
0 1 0 0 1 0
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1 1
1 0 0 1 / 1 1 0 1 1 0

1 0 0 1
0 1 0 0 1 0

1 0 0 1
0 0 0 0 0 0

1 1 0
1 0 0 1 / 1 1 0 1 1 0

1 0 0 1
0 1 0 0 1 0

1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

4 Bitwise Operations

4.1 1’s Compliment
TTL circuits generally deal with multiplication by adding the number to be
multiplied, to itself n number of times. In other words 4 * 9 is adds 4, 9 times.
Division is the same way, the circuits just use subtraction instead of addition as
division is the inverse of multiplication. Processors can be a little different but
usually the compiler will shield you from having to think about these things.
This brings us though, to subtraction. Computers do not really need to subtract,
only add by an operation called 1’s compliment to get a subtracted result. When
performing subtraction, the number you are subtracting numbers from is called
the minuend. The amount you are subtracting is called the subtrahend.

Now that we have a few of the terms out of the way let’s start talking about
1’s compliment. 1’s compliment is where you turn the 1’s in a binary number
into 0’s and the 0’s into 1’s, just write the exact inverse of whatever state
that column in the number reads. For example 10011010 is 01100101 in 1’s
complement. To subtract in binary you simply invert the subtrahend and add
to the minuend. To better put it, you add the minuend to the 1’s complement
of the subtrahend. If the sum of the addition adds a digit, we carry this (a 12)
to the right-side end. This is called end-around carry here are some examples:

Remember: When borrowing in n2 (Binary), it is the same as putting two
ones over the borrowing column.
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1 0 1 1 0
- 0 1 0 1 0

1 1 0 1

or

1 0 1 1 0
+ 1 0 1 0 1

End-around Carry 1: 0 1 0 1 1
1

1 1 0 0
Remember: add the end-around carry.

This works because by adding the inverse you are dealing with what’s left
as a value from 0. If you think about it for a while it will become clearer.

If there is not a 12 to carry, we have a negative result. If you have a negative
result, you will need to recomplement the result (invert it). This is important
because you will not get the result you are looking for if you subtract in the
standard fashion and you get a negative number:

1 0 1 1 1
- 1 1 0 1 0

- 1 1 0 1

WRONG!

or

1 0 1 1 1
+ 0 0 1 0 1

Invert: 1 1 1 0 0
- 0 0 0 1 1

Correct!

This happens because the computer (or human) will effectively borrow to
infinity. If you want to get around this and still use the standard human method
of binary subtraction just make your subtrahend the smallest number and know
that that result is a negative.

With the micro-controllers available now, you will rarely need to deal with
TTL circuits and the compilers now are so advanced you really will probably not
need to deal with 1’s complement. You will deal with 2’s complement however.
2’s complement is insanely easy to explain. The last bit is inverted for negative
numbers. That’s it, that is all there is to it. This means an 8-bit register that
would normally go from 010 (000000002) to 25510 (111111112), would have 7
bits (one less) for a magnitude and one bit reserved for a polarity. Using the 2’s
complement syntax that register will now describe -12710 (100000002) to 12710
including a 010. The -010 takes a little thinking about, you are not gaining any
room, the 0 has the potential to be it’s inverse just as the rest of the numbers
do. It will become clear with a little pondering.

4.2 Big and Little Endians
Endiannism there is an interesting etymology for this word that is beyond the
scope of this page. We will however discuss the terms meaning. A packet is a
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block on information, they can vary in size, for our purposes we will make our
packet size 1 byte (8-bits). The Endianness of a packet of information, a byte
(anything 8-bits in length) for example is the description of which way the data
travels. For instance, in these articles we have been reading binary numbers with
the least significant bit on the right. A computer may see things differently, a
computer may read information in a little-endian way or a big-endian way. Here
is a table to help us:

Endian First Bit Last Bit
Little Least Significant Most Significant
Big Most Significant Least Significant

Early Motorola and IBM chips were big-endian and Intel chips were little-
endian. This means that the IBM chips interpreted the first bit of an 8-bit
variable as the 128 column. In reality there are many different types of endians,
for instance with large packets of packets. Another example are systems that
treat a 32-bit number as two 16-bit numbers. This really needs to be dealt with
on a project to project basis. I mention it here only as a diagnostic step you
may want to take if you are having trouble.

5 Bit Shifting
Bitshifting is the practice of shifting all the columns of a binary number to
the left or the right. The left-shift operator in languages with a C like syntax
look like this <‌< . The left-shift operator will shift the bits to the left in a
variable n times, with a default shift of 1 place. This means 00001011 shifted
to the left once will now be 00010110. This effectively doubled the numbers
magnitude. What happens with a number like 1011 though? Shifted once to
the left, this number would end up 0110. This is because the left-shift operator
is not an end-around carry operator. The original number is lost. When using
the left-shift operator, you may shift 1, 2,...n times to the left by the syntax N
<‌< timesToShift ; where N is the variable to be shifted and timesToShift is the,
you guessed it, the # of times the variable is to be shifted.

# To Shift: Not Shifted N<‌<1 N<‌<2 N<‌<3
Number 10101100 01011000 10110000 01100000

This brings us the the right-shift. >‌>‌> The right-shift operator does the
inverse of the left-shift. 101100 shifted once to the right would be 010011 all
information shifted off the right is lost. The right-shift operator divides the
number, if you right-shift once you have divided the number in half. If the
number was an odd number, you are truncating the modulus.

# To Shift: Not Shifted N>‌>‌>1 N>‌>‌>2 N>‌>‌>3
Number 10101100 01010110 00101011 00010101
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Ok, so what happens when we are using 2’s compliment and trying to bit-
shift in this manor? We get funny results! They’ve already thought about this,
the operator is the arithmatic-right-shift operator. >‌> This operator is not an
end-around carry operator, but it does pad with the state of the most signif-
icant bit (the polarity bit). For instance this number: 10001110 shifted right
arithmetically 3 times would be 11110001. There is not an arithmatic-left-shift
operator because it would not produce a number you could not derive from the
operators already given.

# To Shift: Not Shifted N>‌>‌>1 N>‌>‌>2 N>‌>‌>3
Number 10101100 11010110 11101011 111110101

# To Shift: Not Shifted N>‌>‌>1 N>‌>‌>2 N>‌>‌>3
Number 00101100 00010110 00001011 00000101

6 Other Computer Numbering Systems

6.1 Octal System
Decimal Number 0 1 2 3 4 5 6 7 8 9
Octal Number 0 1 2 3 4 5 6 7 10 11

Decimal Number 10 11 12 13 14 15 16 17 18 19 20
Octal Number 12 13 14 15 16 17 20 21 22 23 24

The octal system is radix-8 (N 8), this system uses the numerals 0-7. This
system is a great thing to know. When you’re using the octal system, you can
at a glance, know what number you are looking at in binary. Every three binary
columns are an octal number. Let’s look at a table:

Binary Number Decimal Equivalent Octal Equivalent
101101 32+8+4+1=4510 558=5*8+5=4510
111100 32+16+8+4=6010 748=7*810+4=4510

Every three binary columns can go from 0 - 7 in magnitude. This means
you are either staring at a 1’s column, a 2’s column, or a 4’s column. Every set
of three to the left over you go, you add a * 8. (Cn).

This table will show Octal numbers:

Binary Number Octal Sets Conversion Equivalent
10110101 10 110 101 2*82

10+6*81
10+5*80

10=18110

13



6.2 Hexadecimal System
The Hexadecimal system, hex, is radix-16. Until now, we have dealt with nu-
meration systems with less characters than the decimal system. We are now
going to look at a system with 16 different glyphs with magnatudes from 0 to
15. Instead of a subset showing the base, in hex we simply add 0x as a prefix
to show that we are working in hex:

Decimal Number 0 1 2 3 4 5 6 7 8 9 10 11

Hex Number 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B

Decimal Number 12 13 14 15 16 17 18 19 20 21 22 23

Hex Number 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

Here are some larger numbers:

Decimal Number 40 255 256 257 89372 1512394
Hex Number 0x28 0xFF 0x100 0x1001 0x15D1C 0x1713CA
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